

A STATEGY FOR WEB-BASED MODELING OF HYDRODYNAMIC

PROCESSES

Akm Saiful Islam1 and Michael Piasecki2 (Member, ASCE)

ABSTRACT
Hydrodynamic model generally deals with enormous amount of data and utilizes huge

computational resources for simulation. Powerful and robust servers with extensive storage capabilities are
therefore desirable for rapid simulation. Unfortunately, it is not always possible for an individual to effort
those kind of facilities whereas a central computer system can be the viable alternative to serve many
clients. The simplest way for a client to communicate with the central simulation server can be using a web
browser and such kind of simulation has been classified as web based simulation. In this paper, simulation
of a hydrodynamic model has been investigated as a case study of the large scale application of web based
simulation. Standardized description of the hydrodynamic model data or, metadata has been created using
geographical information metadata, ISO 19115:2003 standard. A formal specification of the simulation
domain or ontology has been developed to share and retrieve this information unambiguously. Ontology
based simulation can also be applied for analyze and future reuse of the simulation domain knowledge.
Therefore, web based simulation of hydrodynamic models could be a new paradigm shift in the
hydrodynamic modeling as well as numerical modeling area.

INTRODUCTION
Numerical models have been used in many scientific disciplines to better understand the

physical behavior of the nature. A number of hydrodynamic models are now available to
investigate complex flow phenomena of rivers, estuaries, lakes or coastal regions. Despite recent
advances to include 3-D representations of the simulation domain and the ever improving level of
graphical display options, the modeling user community still faces some shortcomings when
faced with the need to move data around between pre- and post processors and to exchange
model data in the user community. Typical problems include the lack of a standardized
framework to describe model data, inadequate model data exchange facilities, insufficient
interoperability of models among different platforms or operating systems, inefficient search and

1 Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA,
2 Corresponding author: Department of Civil, Architectural & Environmental Engineering, Drexel University,
Philadelphia, PA 19104, USA email: Michael.Piasecki@drexel.edu fax: 215-895-1363.

retrieval of modeling information, and the absence of the possibility to share and reuse the
knowledge already gathered about a certain simulation domain. In addition, several scientific
communities have recognized the need to develop numerical models that will serve long term
objectives, are not proprietary but based on open source components, and should serve as a
resource to the community for scientific exchange and further improvement. This has spawned
the idea to develop community models. There are many relatively sophisticated community
models available such as the groundwater community model MODFLOW (USGS, 2000),
atmospheric community models MM5 (MM5, 2004), and community climate system models
CCSM (CCSM, 2004), to name just a few. These models are freely available as a modeling tool
within the respective community and allow scientists to focus on their needs rather than building
a model from scratch (House, 2000). However, most of these community models are not yet
designed to operate in an integrated environment that would ease the work burden that comes
with the need to share and exchange modeling data within the community. Consequently, the next
step for the development of numerical models should focus on a standardized data description, an
improved functionality that permits better sharing of both codes and model data, and provide a
platform for preprocessing, execution, and retrieval of simulation results in an environment that
is operating system independent.

Web based simulation, WBS, was introduced in mid 90’s when the web browsers became
available (Miller, Fishwick, Taylor, Benjamin, & Szymanski, 2001). The WBS concept is based
on the idea that any user can perform a simulation either in the client machine or on the server
machines using a web browser. Moreover, it can potentially utilize a wide range of databases and
information systems through the web. Because one of the priorities is to build a platform
independent system, Java has been recognized as the essential language for WBS (Kuljis & Paul,
2001). Several WBS environments have been developed based on Java such as JSIM (Miller,
Seila, & Xiang, 2000), simjava (F. Howell, 1988), DEVSJAVA (Sarjoughian & Zeigler, 1988) to
this date. Unfortunately, most of these environments are either currently unavailable or have not
been further developed. Wiedeman (2001) conducted a review of these systems and found that
most of them were used for test scenarios only and that actual user requirements were not taken
into account. We have found only very few WBS systems that permit data I/O operations of
several 100Mbytes of data one of which is the Websim3D system (Olsen, 2003) that permits
fast access to view and download earth quake simulation results.

In recent years the development of web based technology has seen much progress. The
World Wide Web Consortium, W3C, is currently working on the future vision of the WEB,
known as “Semantic Web”, to build a machine understandable meaningful form of web resources
(Berners-Lee, Hendler, & Lassila, 2001). One of these efforts has led to the creation of the Web
Ontology Language (OWL), a language that can formalize the domain knowledge with explicit
specification in a machine understandable format. Additionally, the formal specification of the
domain knowledge in an ontology permits much better retrieval, share, reuse or analyzing of this
knowledge. In the following sections we will outline how we have incorporated these new
technologies in the development of a WBS for hydrodynamic processes.

WEB BASED SIMULATION OF HYDRODYNAMIC MODEL
Typically a hydrodynamic model requires the I/O of a substantial amount of data such as

water elevation, discharge, dispersion data, wind effect data, roughness, viscosity data, boundary

2

and initial condition data, all of which may be spatially and temporally invariant. We have
classified these data into two categories: (1) geospatial data, and (2) model data. Geospatial data
includes maps, the numerical grid, the bathymetry, and the digital elevation model, while model
data includes the state variables and all coefficients and constants, which are georeferenced to the
geospatial data sets. In addition, parameters such as gravity, iteration counters, tolerance limits, to
name just a few, have also been included in the model metadata. A multi layered data model has
been developed to handle the model data (Fig.1), for which the geospatial data set serves as the
basis. Each layer represents a snap shot in time of the model data for a specific time, i.e. time
evolution of a specific variable is stacked in layers above the base layer.

FIG.1. Layer data model of the hydrodynamic model data

This study uses a two dimensional, vertically averaged, finite element code for the
numerical integration of the governing shallow water equations. The formulation is second order
accurate in time and 5th order accurate with respect to numerical dispersion and diffusion in space.
The model was originally developed by Katopodes (1984) and has since been applied and tested
in a number of applications; see for example Piasecki and Katopodes (1997). The code has been
applied to a test bed that encompasses the Upper Potomac River around Washington D.C. It is
comprised of ~1400 nodes and extends over a domain approximately 23 kilometers in length.
The flow in this part of the Potomac is primarily driven by the tide signal, which results in
significant flow reversals making this domain a highly dynamic and unsteady flow regime.

In order to find an unambiguous description for model data, metadata or “data about
data”, must be defined that encompasses and incorporates controlled vocabularies (Bossomaier &
Green, 2001). The International Standard Organization, ISO, has published a metadata standard,
i.e. the ISO 19115:2003, to describe digital geographic data (ISO, 2003). Since a hydrodynamic
code solves the governing equation on a geo-spatial reference, i.e. a numerical grid, the ISO

3

standard is well suited to be used as a first cut to properly describe numerical model data.
However, while the ISO 19915 standard contains many metadata elements, it only represents a
generic backbone for use in the geographical data realm. In other words, the standard typically
needs to be extended or tailored to the needs of a specific community or application. In addition,
it is desirable to create a framework within which not only humans but also machines can deduce
meaning between the descriptive elements. This requires the inclusion of a concept that permits
machine understandable specifications, like an ontology, to be interpreted by inference engines.
One such technology, published by the World Wide Web consortium, is the Ontology Web
Language, or OWL, which has been used to encode the ISO 19115 standard (Islam et al., 2004).

WBS-DOMAIN/SIMULATION ONTOLOGY
Using OWL, an ontology was created to describe a numerical model (Fig.2). Geospatial

data encompasses the numerical grid, maps, costal boundaries, charts, or a digital elevation
model all of which are represented as “GeoSpatialData” class in the ontology. The most
important geospatial data set is the numerical gird, which is represented as “Grid” class in the
ontology. Numerical grids have nodes and elements, which are represented as “Node” and
“Element” class in the ontology, respectively. Model data includes data, which is related to
geospatial data and is represented as “ModelData” class in the ontology. In this instance, model
data includes but is not limited to wind, discharge, velocity, water elevation, viscosity coefficient,
boundary types, Manning’s roughness coefficient, dispersion coefficients, tidal elevation, and
tributary discharge. These model data have been represented as a subclass of the “ModelData”
class in the ontology and could consist of thousands of individual data components. These
individual data components are represented as “Data” class in the ontology and are connected
with either the “Node” or “Element” class of the ontology.

Besides the necessary I/O organization of data and the description of the flow of these
data streams, metadata about the model execution itself needs to be incorporated. These include
more general descriptions about the purpose of the simulation, time intervals, modeler in charge,
execution times associated with the run, and so on. To this end the WBS ontology has been
incorporated into the OWL encoded ISO 19115 to create the foundation of metadata classes.
Based on the root class of the ISO metadata ontology (“MD_Metadata”) three subclasses were
created in the WBS ontology: (1) “MetadataModel”, (2) “MetadataGeoSpatialData”, and (3)
“MetadataModelData”. In the WBS ontology, each geospatial data type has a metadata class
“MetadataGeoSpatialData”. Similarly, each model data type has a metadata class
“MetadataModelData”. A numerical model could have some model parameters such as gravity,
degree of freedom, number of iteration, tolerance limit etc. These parameters are represented as
“MetadataModel” class in the ontology.

4

FIG.2. Ontology for a web based hydrodynamic model

WEB BASED SIMULATION ARCHITECTURE
Because of the potentially large amount of necessary data transfers between client and

server, we have adopted a client-side-request and server-side-simulation approach as execution
mode. This will limit the communication between client and server and therefore omit a potential
data transfer bottleneck. The best architectural design for of this kind of system was
recommended by Kurniawan, (2002) who suggests to use a Model-View-Controller (MVC)
architecture. We will discuss the details of the MVC architecture and how it is adopted for
creating a GUI to display different component of the WBS environment in the next subsection.

GRAPHICAL USER INTERFACE (GUI)
The performance of large simulation systems can be improved if the model or business logic

is separated from the model views or presentation logics. This design pattern has been known as
model view controller (MVC) architecture, which suggests to divide the system into three
components (1) model, (2) view and (3) controller (Burbeck, 1992). A model is the representation
of the simulation domain; views are the visual representations of the model; and controllers
handle the user interactions with the model. MVC has been used in many software development
projects and provides the fundamental basis for the JAVA SWING API to support graphical user
interfaces (GUI) and graphics functionality (Stelting & Maassen, 2002). We adopted the MVC as
the basic architecture of our simulation environment whose components are shown in Fig.3. An
object data model, which is based on OWL ontology, is the core of the system. The Model stores
and retrieves data from an object relational database, PostgreSQL (PostgreSQL, 2003). The
Model also keeps track of each registered view and will notify its View components if any change

5

in the Model occurs. These View components are built using Java Server pages (JSP) and contain
visual components such as Java Applet or, HTML Form elements. During the session View
components retain a state of the Model to receive data and also contain one or more controllers.
Any request for the changes in View component will be sent to the controller (which is a Java
Servlet program) that contains a reference of the Model. Any request fro change from the View
will prompt the controller to update the Model. The controller also decides which view will be
displayed to the user. The MVC architecture gives maximum flexibility to the WBS system so
that any view can be added or deleted from the system without having to change the model.

FIG.3. WBS user interface based on Model View Controller (MVC) architecture

Currently six different views are registered to display the different components of the

WBS system: (1) model view, (2) metadata view (3), edit view (4), simulation view, (5) graphical
view and (6) help view. The Model view is used to search for any pre-existing model. This search
can be performed in simple-mode through model description keywords or with a more advanced
mode via metadata elements. Once the desired model has been found, the user can copy, rename,
or delete it. The Metadata view is used to create, display, edit, or delete metadata for the
hydrodynamic model. In Graphic view mode the user can display model results as a contour plot,
(Fig.4). The Graphical view also supports the display of temporal model data as a time series plot
for a specific point. The Edit view mode permits the display, creation, edit or deletion of model
data. The Simulation view tracks the execution of the model for the desired length of the
simulation. Finally, the Help view provides suggestions and tips to the user about the WBS
environment.

6

FIG.4. Screen shot of contour plot for bathymetry data using Java Applet

REPOSITORY FOR MODEL DATA AND METADATA
We are using Jena, a Java framework for developing semantic web applications

developed by HP Labs semantic web research (Jena, 2003). Jena is an open source package that
has an OWL Application Programming Interface (API), and that also supports rule based
interface engines. Jena has been used to create instances for model data and model metadata that
are based on the simulation ontology. The data can either be stored in a flat file system or in a
database. For large data sets, however, storage in databases is preferable because querying and
retrieving is more efficient when compared to using a flat file system. For this reason, we chose
the object relational database, PostgreSQL, for storage of the ontology instances created by the
Jena API. The instances of the simulation ontology are expressed as Resource Description
Framework (RDF) in either RDF/XML format or N-3 triple format. Although RDF/XML is the
official serialization technique for RDF data, the N-triple format is preferable when using
medium to large databases (Jena, 2003). Figure 5 shows an example using a RDF graph model
that depicts the serialization and storage of RDF triples in a database. For example, the ontology
class “CI_Citation” has a property “title” to describe a dataset. If “CI_Citation” has an instance
“dataCitation”, it can be represented in the RDF graph using the prefix “rdf:id” (Fig.5(a)).
RDF/XML serialization of this RDF graph is shown in Fig.5(b), while Fig.5(c) shows how this
RDF/XML can be stored in a relational database with tables that contain subject, object and
property

7

(a)

(b)

(c)

FIG.5. (a) RDF triple graph, (b) RDF/XML document, and (c) database table

SUMMARY
This paper introduces the concept for a web-based simulation system for solving the

governing equations for a two dimensional hydrodynamic model. The main thrust of this study is
to provide a new paradigm for remote clients to explore the computational facility of powerful
servers to simulate large scale hydrodynamic processes. To this end we have defined a specific
metadata set that describes hydrodynamic model data based on the ISO 19115:2003 metadata
standard. In addition we have developed simulation ontologies to search and retrieve this
metadata information and to reuse it as simulation domain knowledge. A Jena API has been used
to create instances of this simulation ontology and to store these instances in relational database.
We have furthermore used the Model View Controller (MVC) approach as core architecture to
develop user interfaces which separate the business logic from its representation. The numerical
code has been wrapped into a Java environment and is placed on the web Server, which in turn
runs the Tomcat server which utilizes technologies such as Java Servlet and Java Server Pages
(JSP). The client side graphical user interfaces (GUI) implements Java Applet or HTML forms to
display different presentations (views) of the model.

Although this study shows that it is possible to execute large scale numerical model
simulations using a web based simulation architecture, there are still many challenges to
overcome in case more complex numerical models are targeted for WBS. A possible future
direction of the study could be the development of a web based system for three dimensional
water quality or subsurface transport models, or the development of efficient search facilities
using software agents, and building robust systems using Enterprise Java Bean (EJB) technology
for enterprise applications.

REFERENCES
Berners-Lee, T., Hendler, J. A., & Lassila, O. (2001). The Semantic Web. Scientific American,

284(5), 34-43.

8

Bossomaier, T. R. J., & Green, D. (2001). Online GIS and spatial metadata. New York: Taylor &

Francis.
Burbeck, S. (1992). Applications Programming in Smalltalk-80(TM): How to use

Model-View-Controller (MVC). Retrieved 03/05/04, 2004, from
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

CCSM. (2004). Community Climate System Model, from http://www.ccsm.ucar.edu/
F. Howell, R. M. (1988). simjava: a discrete event simulation library for Java. Paper presented at

the 1988 International Conference on Web-Based Modeling & Simulation, The Society
for Computer Simulation International, San Diego, CA.

House, C. (2000). Report of the Community Sediment Transport Modeling Workshop, from
http://walrus.wr.usgs.gov/transport/

Islam, A. S., Bermudez, L., Fellah, S., Piasecki, M. (2004). Share and Reuse of Numerical Model
Data for the Semantic Web, from http://loki.cae.drexel.edu/~wbs/ontology/

ISO. (2003). Geographic Information - Metadata.
Jena. (2003). Jena Documentation, from http://jena.sourceforge.net/documentation.html
Katopodes, N. D. (1984). A Dissipative Galerkin Scheme for Open-Channel Flow. Journal of

Hydraulics, ASCE, 110(4), 450-466.
Kuljis, J., & Paul, R. J. (2001). An appraisal of web-based simulation: whither we wander?

Simulation Practice and Theory, 9(1-2), 37-54.
Kurniawan, B. (2002). Java for the Web with Servlets, JSP, and EJB. Indianapolis, USA: New

Riders Publishing.
Miller, J. A., Fishwick, P. A., Taylor, S. J. E., Benjamin, P., & Szymanski, B. (2001). Research

and coomercial opportunities in Web-Based Simulation. Simulation Practice and Theory,
9(1-2), 55-72.

Miller, J. A., Seila, A. F., & Xiang, X. (2000). The JSIM web-based simulation environment.
Future Generation Computer Systems, 17(2), 119-133.

MM5. (2004). Community Model, from http://www.mmm.ucar.edu/mm5/mm5-home.html
Olsen, K. B. (2003). Websim3d: A Web-based System for Generation, Storage and Dissemination

of Earthquake Ground Motion Simulations. Paper presented at the 2003 AGU Fall
Meeting, San Francisco, CA.

Piasecki, M., & Katopodes, N. D. (1997). Control of Contaminant Releases in Rivers and
Estuaries Part I: Adjoint Sensitivity Analysis. Journal of Hydraulic Engineering, ASCE,
123(6), 486-492.

PostgreSQL. (2003). PostgreSQL 7.4.2 Documentation, from http://www.postgresql.org/docs/
Sarjoughian, H. S., & Zeigler, B. P. (1988). DEVSJAVA: Basis for a DEVS-based collaborative

M&S environments. Paper presented at the 1988 International Conference on Web-Based
Modeling & Simulation, The Society for Computer Simulation Intnl., San Diego, CA.

Stelting, S., & Maassen, O. (2002). Applied Java Patterns. California, USA: Sun MicroSystems
Press.

USGS. (2000). MODular three-dimensional finite-difference ground-water FLOW
model--original model (MODFLOW), from
http://water.usgs.gov/nrp/gwsoftware/modflow.html

Wiedemann, T. (2001). Simulation application service providing (SIM-ASP). Paper presented at
the Winter 2001 Simulation Conference, Arlington, VA, USA.

9

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.ccsm.ucar.edu/
http://walrus.wr.usgs.gov/transport/
http://loki.cae.drexel.edu/~wbs/ontology/
http://jena.sourceforge.net/documentation.html
http://www.mmm.ucar.edu/mm5/mm5-home.html
http://www.postgresql.org/docs/
http://water.usgs.gov/nrp/gwsoftware/modflow.html

